Step of Proof: rfunction_void_wf
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
rfunction
void
wf
:
.....eq aux..... NILNIL
WellFnd{1}(Void;
u
,
v
.(
i
,
j
. True)(
u
,
v
))
latex
by ((((RW (RepeatC (UnfoldsC ``wellfounded guard so_apply``) ANDTHENC AbReduceC) 0)
b
CollapseTHEN (D 0))
)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
{
T
}
,
x
(
s
)
,
P
Q
,
x
:
A
.
B
(
x
)
,
True
,
WellFnd{i}(
A
;
x
,
y
.
R
(
x
;
y
))
,
T
Lemmas
true
wf
origin